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DOE-NCI Partnership: 
Enable the most challenging deep learning 
problems in cancer research to run on the 
most capable supercomputers in the DOE
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To develop and deploy robust and scalable AI solutions for automated 
information extraction from free text pathology reports. 

AI to Modernize the National Cancer Surveillance Program
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Information extraction of reportable data elements

Privacy-preserving AI model sharing

Reportability

Recurrence

I will present a few vignettes on…



6

AI Methodology

• Different deep learning architectures for simultaneous 
learning of multiple information extraction tasks

•site, topography, histology, behavior, laterality, grade,…

• Support both report-level and case-level analysis
• Minimal document pre-processing
• Gold standard: Variables coded in the registry abstract
• Benchmarking against traditional machine learning
• Testing within and across SEER registries

6 6
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Information Extraction of Key Data Elements

70 cancer sites (306 subsites); 515 histologies; 9 grades; 7 lateralities; 4 behaviors 

>20,000 cancer phenotypes 
observed in based only on 

6 attributes
Extension to other NLP tasks to extract more data elements (e.g., biomarkers) will increase the number and 
complexity of cancer phenotypes observed – combinatorial explosion in computational cancer phenotyping 
Exascale computing
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Development and Testing Protocol

• Iterative development and refinement using SEER data
o Louisiana, Kentucky, Utah, New Jersey, California, Seattle,….

• Broad deployment and testing via IMS
o Across 13 SEER registries

• Evaluation metrics
o Overall accuracy
o Accuracy based on report type
o Accuracy on over-represented vs. under-represented classes 
o Uncertainty quantification (i.e., confidence)
o Time efficiency
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Iterative Improvement and Testing: 13 SEER Registries, 
~4M documents 

Trained on 
2 registries

Trained on 
4 registries

Privacy-
Preserving 
Model
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Time study results:

• Manual path screening for 5 variables – 1 year, 
– 600,000 path reports: 4,048 hrs (55sec/report)

• AI path screening on same task: 55 min (12msec/report)

• 4500x speed gain to enable near real time cancer surveillance

Efficiency
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Sharing the Model

• If we can’t share data, can we share trained models across registries and beyond?

o Contrary to imaging applications, sharing the trained deep learning NLP model implies sharing also the 
vocabulary

o The latter raises privacy concerns, since the vocabulary contains names, addresses, and other PII 
information.

• Privacy-preserving model
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Proposed Solution

• Build a dictionary from all 

available word in the registry 

training corpus 

• Exclude all words that are not 

available in a publicly available 

dictionary

• Train AI model using the reduced 

dictionary



1313

Iterative Improvement and Testing: 13 SEER Registries, 
~4M documents 

Model 
trained on 
2 registries

Model 
trained on 
4 registries

Privacy-
Preserving 
Model
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Preliminary Results
• Datasets:

• Kentucky cancer registry (n=1509)
• Louisiana cancer registry (n=61610)
• New Jersey cancer registry (n=14463)
• Utah cancer registry (n=27677)

• Inference Task:
• Reportability (reportable; non-reportable and unclear)

• Model training and evaluation (k-fold cross 
validation):

• Comparison with alternative predictive models
• Logistic Regression (LR)
• Naïve Bayes (NB)
• Support Vector (SVM)
• Convolutional neural network (single layer CNN)
• CNN + bag-of-embeddings (CNN*)

Model Sensitivity Specificity AUC

LR
90.13
(90.03, 90.22)

70.28
(70.04, 70.51)

89.82
(89.73, 89.92)

NB
89.12
(89.02, 89.22)

59.14
(58.88, 59.39)

84.82
(84.71, 84.94)

SVM
93.46
(93.38, 93.54)

49.73
(49.47, 49.98)

85.28
(85.16, 85.40)

CNN
90.12
(90.02, 90.23)

69.90
(69.68, 70.12)

90.25
(90.15, 90.35)

CNN*
90.91
(90.82, 91.01)

71.56
(71.33, 71.79)

91.80
(91.71, 91.88)
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Recurrence

• Recurrence is essential to report given that 5% of the US population are cancer survivors and 
at risk

• Real time identification of recurrence is also critical to the clinical trials infrastructure as many 
trials are focused on recurrence

• Initial focus on unstructured pathology reports

• Objective: Identify pathology reports indicating “de novo” mets

• Hypothesis: Model trained to detect metastasis at the time of diagnosis (for which we have CTC 
gold standard) can be used to detect metastasis indicative of disease progression.
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Preliminary Results

• Denovo metastasis classification performance:
o 98% accuracy
o 90% sensitivity and 2.9% false positive rate

• Performance on additional, manually annotated data including all metastases
o 85% accuracy
o 82.6% sensitivity and 14.5% false positive rate
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Building & Scaling AI NLP Tools on

• Implemented an inherently parallel hyperparameter optimization 
approach called HyperSpace that simultaneously explores 20,480 
deep learning models on Summit while optimizing model parameters 
that affect clinical performance.

Computational Scalability

Multi-task learning convolutional neural network trained to extract 
primary cancer site, histology, behavior, laterality , and grade

Peak of 3.3 ExaOps for data analytics and AI
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Summary & Ongoing Challenges
• AI shows promise for automated information extraction from unstructured pathology reports   

to increase efficiency, data quality, and timeliness of cancer surveillance.

• Understanding the sources of AI errors is important for continuing improvement
o More errors with low prevalence classes
o Human ground truth presents limitations

• Collaboration across registries is essential to fully exploit the promise of AI

• Data sharing OR Model sharing?
o Reliable de-identification of unstructured text reports is difficult
o Need for privacy preserving AI solutions to handle data privacy and confidentiality restrictions

• Human-AI integration is an open-ended question
o What is the most effective way to integrate AI in national cancer surveillance? 
o Is interpretability possible and/or important?
o Model-level and case-level uncertainty quantification maybe helpful 
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Final Thoughts on AI for Cancer Registries 
• Hope

o The convergence of big data and AI will enable near real time cancer surveillance

• Hype
o AI solutions are superior to collective intelligence of the experts
o Practical translation of AI tools is straightforward 

• Hard Truth
o AI solutions have a single point of failure: data quality
o Human-AI integration approach will impact real-world value

o AI interpretability and (real-time) uncertainty quantification are important future directions
o Vulnerability issues for AI models and AI users (cognitive hacking) are critical
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THANK YOU!!!

tourassig@ornl.gov
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