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DOE-NCI Partnership:
Enable the most challenging deep learning
problems in cancer research to run on the
most capable supercomputers in the DOE
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National Cancer Institute &
Department of Energy Collaborations

‘Joint Design of Advanced Computing
Sol.utluns for Cancer Pilots

Cellular Level Pilot for Predictive
Modeling for Pre-clinical Screening

Accelerating methods to identify
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=p DOE exascale
computing project

=) Information gathered
from the pilots will:

Provide insight into
scalable machine
learning tools

F Provide analytics to
reduce time fo
solution

El Inform the design of
future computing
solutions

Population Level Pilot for Population
Information Integration, Analysis
and Modeling
Understanding the of
s it i
factors in cancer outcomes

Address critical needs in computing, data transfer,
and data management in cancer research.
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Al 1o Modernize the National Cancer Survelllance Program
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improve outcomes in the < | SEER Cancer Information
“real world” =

Resource
; Prospectively support
_\ﬁ;::'— development of new diagnostics

and treatments

y
Understand treatment and ﬁf ' ' T ' ' WE@
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To develop and deploy robust and scalable Al solutions for automated
%,0AK RIDGE information extraction from free text pathology reports.
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| will present a few vignettes on...

Information extraction of reportable data elements

Privacy-preserving Al model sharing

Reportability

Recurrence
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Al Methodology

- Different deep learning architectures for simultfaneous
learning of multiple information extraction tasks

site, fopography, histology, behavior, laterality, grade,...
- Support both report-level and case-level analysis

- Minimal document pre-processing
- Gold standard: Variables coded in the registry abstract
- Benchmarking against tfraditional machine learning

- Testing within and across SEER registries
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Information Extraction of Key Data Elements

Shared layers Task-specific layers

Word Embeddings . softmax Output
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Site Development &
deployment of
Subsite product
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NLP Algorithmic
innovation and
Hyperparameter
Optimization
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>20,000 cancer phenotypes
l observe6d in t?ased only on
attributes
Extension to other NLP tasks to extract more data elements (e.g., biomarkers) will increase the number and
complexity of cancer phenotypes observed — combinatorial explosion in computational cancer phenotyping =
Exascale computing
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70 cancer sites (306 subsites); ala histologies; 3 grades; 7 lateralities; 4 behaviors




Development and Testing Protocol

e |terative development and refinement using SEER data
o Louisiana, Kentucky, Utah, New Jersey, California, Seattle.....

e Broad deployment and testing via IM3
o Across I3 SEER registries

e tvaluation metrics
o Overall accuracy
o Accuracy based on report type
o Accuracy on over-represented vs. under-represented classes
o lUncertainty quantification (i.e., confidence)
o lime efficiency
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lterative Improvement and Testing: 13 SEER Registries,
~4M documents

V6 AA BB cC DD EE FF GG HH Il 1l KK LL MM Average
Site 9396%  92.04%  93.10%  9454%  9284%  9264%  9523%  93.13%  9397%  93.86%  94.38%  93.95%  9341%  93.62%
Histology 8452%  7933%  8267%  83.03%  8411%  8250%  85.63%  82.86%  8268%  81.03%  80.19%  8222%  78.82%  82.28%
Trained on Laterality 9338%  9239%  93.92%  9295%  9328%  93.68%  94.76%  93.06%  9293%  94.24%  9231%  9422%  90.39%  93.19%
2 regisfries Behavior 9.61%  9647%  95.81%  9651%  9597%  96.84%  97.52%  9525%  9640%  97.23%  95.58%  96.53%  97.45%  96.47%
Grade 7982%  7523%  77.06%  81.20%  7883%  7866%  8293%  7938%  78.16%  7815%  79.92%  8155%  79.12%  79.23%
Average 89.66%  87.09%  8.51%  8965%  8901%  8886%  91.21%  88.74%  8883%  8890%  88.48%  89.69%  87.84%
V7 AA BB cC DD EE FF GG HH Il 1) KK LL MM Average
Site 93.88%  91.89%  92.95%  9448%  9318%  9269%  9537%  93.15%  9455%  9391%  9411%  9511%  9267%  93.69%
Trained on Histology 8723%  8358%  87.12%  86.26%  8790%  8633%  88.80%  87.09%  8691%  B8474%  83.04%  87.56%  8391%  86.19%
4 regisfries Laterality 9421%  92.96%  9411%  93.92%  9395%  93.99%  9527%  93.94%  94.02%  9437%  93.55%  9527%  92.32%  93.99%
Behavior 9.67%  96.71%  96.22%  96.94%  9669%  97.10%  97.74%  95.74%  96.96%  9758%  9576%  97.17%  97.35%  96.82%
Grade 8160%  8021%  78.99%  8352%  8113%  8195%  85.15%  8047%  8187%  8044%  8277%  8523%  8267%  82.00%
Average 90.72%  89.07%  89.88%  91.02%  9057%  9041%  9247%  90.08%  90.86%  90.21%  89.85%  92.07%  89.78%
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Efficiency

Time study results:

 Manual path screening for 5 variables — 1 year,
— 600,000 path reports: 4,048 hrs (55sec/report)

e Al path screening on same task: 55 min (12msec/report)

 4500x speed gain to enable near real fime cancer surveillance
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Sharing the Model

e |t we can't share data, can we share trained models across registries and beyond?

o Lontrary to imaging applications, sharing the trained deep learning NLP model implies sharing also the
vocabulary

o The latter raises privacy concerns, since the vocabulary contains names, addresses, and other Pl
information.

e Privacy-preserving model
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Proposed Solution

Word to Index Word Embeddings Matrix
. . o 0 unknown 0 [0.196, - - - — 0.028]
¢ BUIld O d|CT|OnOry from O” Sentence o Document Matrix
1 a Sequence 1 | (=0.075.- - —0.064]
. . o biopsy 1 [~0.075, - - - — 0.064]
O V O I | O b | e WO rd I n -I- h e re g I S -I- ry demonstrates| 23 and 253 253 | oo oo [0.026, - - - — 0.004]
254 of 254 [0.056, . ..0.132] -
a 254 [0.056, ...0.132]
TrO I n I n g C O rp U S =~ solid p»| 742 | demonstrates > 742 »| 742 ] 1-0.080,- .- —0.142 > o080 o R
and 1286 [0.078, ...0.109]
diffuse 1286 biopsy 2901 1286| 10.07s,...0.109] [=0.121, ...0.053]
- Exclude all words that are not
2901 diffuse 2901 [(-o0.121,...0.053]
of Vv [—0.081,...0.130]
. | b | . b | . | . | b | - 2902 solid 2902| (-0.233,- - - 0.009) . .
avdallaple In d publiCly avalidole W Veor @)
VvV proliferation \V4 [—0.081,...0.130]

d|C'|'|OnOry Word Vector (d)

- Train Al model using the reduced

dictionary
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lterative Improvement and Testing: 13 SEER Registries,
~4M documents

V6 AA BB cC DD EE FF GG HH Il ) KK LL MM Average
Site 9396%  92.04%  93.10%  9454%  9284%  9264%  9523%  93.13%  9397%  93.86%  94.38%  93.95%  9341%  93.62%
Histology 8452%  7933%  8267%  83.03%  8411%  8250%  85.63%  82.86%  8268%  81.03%  80.19%  8222%  78.82%  82.28%
Model Laterality 9338%  9239%  93.92%  9295%  9328%  93.68%  94.76%  93.06%  9293%  94.24%  9231%  9422%  90.39%  93.19%
trained on Behavior 9.61%  9647%  95.81%  9651%  9597%  96.84%  97.52%  9525%  9640%  97.23%  95.58%  96.53%  97.45%  96.47%
2 regisiries Grade 7982%  7523%  77.06%  81.20%  7883%  7866%  8293%  7938%  78.16%  7815%  79.92%  8155%  79.12%  79.23%
Average 89.66%  87.09%  8.51%  8965%  8901%  8886%  91.21%  88.74%  8883%  8890%  88.48%  89.69%  87.84%
V7 AA BB cC DD EE FF GG HH Il 1) KK LL MM Average
Site 93.88%  91.89%  92.95%  9448%  9318%  9269%  9537%  93.15%  9455%  9391%  9411%  9511%  9267%  93.69%
Model Histology 8723%  8358%  87.12%  86.26%  8790%  8633%  88.80%  87.09%  8691%  B8474%  83.04%  87.56%  8391%  86.19%
trained on Laterality 9421%  92.96%  9411%  93.92%  9395%  93.99%  9527%  93.94%  94.02%  9437%  93.55%  9527%  92.32%  93.99%
4 regisiries Behavior 9.67%  96.71%  96.22%  96.94%  9669%  97.10%  97.74%  95.74%  96.96%  9758%  9576%  97.17%  97.35%  96.82%
Grade 8160%  8021%  78.99%  8352%  8113%  8195%  85.15%  8047%  8187%  8044%  8277%  8523%  8267%  82.00%
Average 90.72%  89.07%  89.88%  91.02%  9057%  9041%  9247%  90.08%  90.86%  90.21%  89.85%  92.07%  89.78%
V7PP AA BB C DD EE FF GG HH Il 1) KK LL MM Average
PriVGCY- Site 93.88%  9235%  93.11%  9470%  9312%  9264%  9550%  93.19%  9469%  94.12%  94.34%  9526%  92.38%  93.79%
Preserving Histology 8762%  83.76%  87.01%  8588%  8766%  86.77%  89.02%  87.30%  87.15%  B84.84%  83.88%  87.68%  83.42%  86.31%
Model Laterality 9417%  92.92%  94.08%  93.76%  9393%  9396%  95.18%  93.27%  9395%  94.22%  93.34%  9520%  91.92%  93.84%
Behavior 96.62%  96.75%  96.22%  97.06%  9672%  97.08%  97.81%  9581%  96.96%  97.62%  9592%  97.19%  97.68%  96.88%
Grade 8128%  7934%  7891%  83.44%  8076%  8035%  84.78%  80.45%  B8151%  79.83%  82.32%  8495%  8280%  81.59%
Average 90.71%  89.02%  89.87%  90.97%  9044%  90.16%  92.46%  90.00%  90.85%  90.13%  89.96%  92.06%  89.64%
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Reportability

Word Embedding Convolution
Vectors Filters

Max Pool/

Concatenate

right

anterior

bladder

Wa”_ P(w;, C;)
show
papillary

neoplasm
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Preliminary Results

Datasets:
- Kentucky cancer registry (n=1509)

- Louisiana cancer registry (n=61610)

- New Jersey cancer registry (n=14463)
- Utah cancerreqistry (n=27677)

Inference Task:
- Reportability (reportable; non-reportable and unclear)

- Model training and evaluation (k-fold cross
validation):

-  Comparison with alternative predictive models

%OAK RIDGE
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Logistic Regression (LR)

Naive Bayes (NB)

Support Vector (SVM)

Convolutional neural network (single layer CNN)
CNN + bag-of-embeddings (CNN¥)

70.28
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Recurrence

e Recurrence is essential to report given that a% of the US population are cancer survivors and
at risk

e Real time identification of recurrence is also critical to the clinical trials infrastructure as many
trials are focused on recurrence

e [nitial focus on unstructured pathology reports

o [Ibjective: ldentity pathology reports indicating “de novo" mets

o Hypothesis: Model trained to detect metastasis at the time of diagnosis (for which we have C1C
old standard) can be used to detect metastasis indicative of disease progression.

(]
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Preliminary Results

* Denovo metastasis classification performance:
o 48% accuracy
o 0% sensitivity and 2.3% false positive rate

e Performance on additional, manually annotated data including all metastases

o ta% accuracy
o 82.6% sensitivity and |4.0% false positive rate

%OAK RIDGE
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Building & Scaling Al NLP Tools on Efil/n?r'ﬁlt

Computational Scalability

* |mplemented an inherently parallel hyperparameter optimization
approach called Hyperdpace that simultaneously explores 20,480
deep learning models on Summit while optimizing model parameters
that affect clinical performance.

T o o D: — : : .
Training Data : §Eﬂ E H D—E R\ . ' Titan  Summitdev Summit
g E < ﬁﬁﬁ E palee ., Platform Cray XK 7 'IBM Power8 S822LC | IBM Power9
) . e Hyperparameter # nodes 118,688 nodes 54 nodes 4,600 nodes
« i EEE H[‘ R configurations
; JJs Specs |1 x K20 GPU |4 x P100 GPU |6 x V100 GPU
e o i o T o o g Gt O Time (single thread) | 16.67 hours ' 1.67 hours 11.39 hours |
""""""""""" ? 0.41 hours (FP)
Better results? . Time (single, multi-GPU) | 16.67 hours |0.73 hours |0.25 hours (HP) |
Hyperparameter 6.56 hours (FP)

266.67 hours 221.49 hours 4.0 hours (HP}

' ) — optimization
e ——

Multi-task learning convolutional neural network trained to extract
primary cancer site, histology, behavior, laterality , and grade

%OAK RIDGE
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Summary & Ongoing Challenges

* Al shows promise for automated information extraction from unstructured pathology reports

to increase efficiency, data quality, and timeliness of cancer surveillance.

« Understanding the sources of Al errors is important for continuing improvement

o More errors with low prevalence classes
o Human ground fruth presents limitations

« Collaboration across registries is essential to fully exploit the promise of Al

e Data sharing OR Model sharing?

o Reliable de-identification of unstructured text reports is difficult
o Need for privacy preserving Al solutions to handle data privacy and confidentiality restrictions

« Human-Al integration is an open-ended question

o What is the most effective way to integrate Al in national cancer surveillance?
o Is interpretability possible and/or important?e
o Model-level and case-level uncertainty quantification maybe helpful

%OAK RIDGE
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Final Thoughts on Al for Cancer Registries

e Hope

o The convergence of big data and Al will enable near real time cancer surveillance

e Hype
o Al solutions are superior to collective intelligence of the experts

o Practical translation of Al tools is straightforward

e Hard Truth

o Al solutions have a single point of failure: data quality
o Human-Alintegration approach will impact real-world value
o Alinterpretability and (real-time) uncertainty quantification are important future directions

o Vulnerability issues for Al models and Al users (cognitive hacking) are critical

%OAK RIDGE
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