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Background

» Due to limited resource, cancer registry data do not capture
complete treatment information.

» Report from IOM (Cancer Patient to Cancer Survival: Lost in
Transition) recommended great focus on linking data between
registry and administrative data.

» Provide empirical foundation for better studied to access
quality of care and outcome.

» A lot registries have done such data linkage (GA, OH, NY,
WV,...)
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Presentation Notes
As we all know, cancer registries have limited resource hence cancer registry data usually have incomplete treatment information. To improve the quality of cancer registry data for quality care and outcome research, it has been recommend by Institute of Medicine to perform data linkage between registry data and administrative data. In fact,  a lot registries have done it, some did it in a small scale and limit to one data resource or one cancer sites, some did it a much larger scale, involve more data and cancer sites.


Background — Data Linkage Methods

» Deterministic matching
» Exact matching on key variables
» Matching is defined by a predetermined algorithm
» No consideration on how likely values are to agree by chance

» Probabilistic matching
» Linkage scores based on properties of fields being matched
» M-probability and U-probability
» Linkage score depends on probability that two records match
» A cutoff value will be used to define potential true matches.

> Involve manual review
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There are two methods for data linkage. One is the deterministic matching, which involves exact matching on key variables. You will have to predefine an algorithm to identify matches. It doesn’t take into account how likely values are to agree by chance. But it is easy and cane be done fairly quickly. 
The other approach is the probabilistic matching which is sometimes called fuzzy matching. It generate a linkage scores based on the probability of matching true pairs and non-matching false pairs from the selected matching variables. Usually a cutoff values will be used to define matches then followed with a manual review process to identify true matches. It takes considerably more time and effort but in general, it provides better linkage results.


Background — Previous Studies

» Previous studies
» WV: Deterministic data linkage for Medicaid and Medicare data
» NY: Probabilistic data linkage for Medicaid data.
» OH: Deterministic data linkage for Medicaid and Medicare data
» GA: Deterministic data linkage for Medicaid and commercial claims data

» The characteristics of probabilistic and deterministic data linkage

have not been thoroughly examined between registry data and
claims data.

» Kentucky Cancer Registry (KCR) is conducting a study to link registry
data and health claims data, such as Medicare, Medicaid and
private insurance group claims data. This provides opportunity to
examine the characteristics of two data linkage approaches.
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Many registries have done linkage studies using one of the approaches, for example….
However, the characteristic of probabilistic and deterministic data linkage was not well documented, particular between cancer registry data and claims data. We think it will be nice to know such characteristics, so a registry can make a more informed decision to identify the linkage method based on their resource and data quality. 
Since KCR is funded to perform data linkage to enhance the cancer registry data using the claims data, this is a good opportunity for us to examine these characteristics. 


CDC Registry Plus Link Plus

» Many probabilistic data linkage software packages are
available.

» Registry Plus Link Plus is free and developed for data linkage
between registry data and data from other sources.

» Link Plus Version 3.0
(http://www.cdc.gov/cancer/npcr/tools/registryplus/lp tech
info.htm)

» Handle very large data sets (over 4 millions records for filel and
no limit on file 2)

» Provide one-to-many matching and many-to-many matching

> Nice manual review interface
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I think some of you have used Link Plus for de-duplication or linking with data from other sources. 

http://www.cdc.gov/cancer/npcr/tools/registryplus/lp_tech_info.htm

Data Involved in the Linkage

» KCR and Medicaid data linkage
» KCR: 2011 KCR registry data for six cancer sites (10,887)

» Medicaid: 2011 Medicaid enrollment data, including SSN, name, birth
date, gender, county code. Race is not reliable. (1,051,987)

» KCR has the access of the Medicaid enrollment data.

» KCR and Humana Data linkage
» KCR: 2011 KCR registry data for six cancer sites

» Humana: 2007-2012 Humana Enrollment data, including SSN, name,
birth date, gender, specific address. Race is not reliable.

» KY 1,714,465, IN 761,051, OH 1,339,385,
» Rest neighboring states 3,696,381

» KCR doesn’t have the access of the Humana enrollment data, which
make the linkage process very challenging.
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To examine the data linkage characteristics, we limited to the 2011 KCR data including 6 cancer sites. For the full data linkage study, we actually used 2000-2012 KCR data. For Medicaid data linkage, only 2011 enrollment file was used. For the Humana data, we tried to use 2011 enrollment file as well, but instead, they used the enrollment file for 2007-2012. The Medicaid data only includes KY patients. The Humana linkage include the enrollment files for KY residents and all neighboring states. We are curious how much cases are able to be captured from the out of state residents. 
Getting access is very hard, long, challenging process. We were very lucky that we are able to get full access of the Medicaid enrollment file. It made it much easier to do the data linkage. Humana is different story. Initially, we planed to get the remote access for the probabilistic data linkage and manual review, because of internal policy change, we tried to access in their office, at the end, we had to access an employee’s work laptop to do it. 


Process for Probabilistic Data Linkage

» Linking criteria:
» Blocking variables: SSN, birthdate, first name, last name, middle name

» Matching variables: SSN, birthdate, first name, last name, middle
name and sex

» Direct method: calculate M and U-probabilities from the distribution
of file 1.

» Cutoff values: lowest linkage score to be considered as a match (5)
» 1-to-Many: Records in File 1 can match multiple records in File 2.

» Many-to-Many: Records in both File 1 and File 2 can match multiple
records.

» Manually review the potential matches to identify true matches
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Five blocking variables, 6 matching variables. Used cuff-off value 5 to capture potential matchings. We used both 1-to-many matching and many-to-many matching approaches so we can compare which method provide better results.


Link Plus — Screen Shot
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This is a screen shot for link plus. This shows the two files to be inked, which variables are blocking and matching variable, and what matching methods are used.


Link Plus — Screen Shot
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This is what the manual review window looks like. It list the matching variables and other variables and put the records from the two files on separate rows. The colored fields shows the values from the two files are different. It makes it very easy to check the record and identify the true values. By the way, You don’t have to cover your eyes, the data here are not real data. 


Deterministic Data Linkage

» Following variables are included in the deterministic data linkage:
SSN, date of birth, gender, last name, first name (both truncated to
the first 6 letters).*

» Following process is used to identify matches:
» Step 1: SSN, Last Name, First Name (Type 1)
» Step 2: SSN, Last Name, Date of Birth (Month), Gender (Type 2)
» Step 3: SSN, First Name, Date of Birth (Month), Gender (Type 3)

» Step 4: First Name, Last Name, Date of Birth (Month and Year), Gender (type
4)

*SM Koroukian. Linking the Ohio Cancer Incidence Surveillance System with Medicare, Medicaid,
and Clinical Data from Home Health Care and Long Term Care Assessment Instruments: Paving
the Way for New Research Endeavors in Geriatric Oncology. J Registry Manag. 2008 Winter; 35(4):
156-165.
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For deterministic data linkage, five variables are used…


ldentifying True Matches

» Medicaid linkage

» Combine “true” matches resulted from manual review process: one-to-many
matches and many-to many.

» Further check matches from the deterministic approach
» Humana linkage

» ldentify “true” matches resulted from manual review process (many-
to many matches) by state

» Further check matches from the deterministic approach
» Combine “true” matches from all states
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Now, we did the data linkage. How do we identify the true matches? For Medicaid linkage, since it only involves the KY residents, we combined the “true matches from one-to many and many to many files after going through the manual review process. Even they are true matches, there are duplicates we have to delete. Then combine with results from the deterministic matching, if it is match from deterministic matching, but not probability matching, we perform another manual review to examine it.  The final match is considered as  complete true matches. 
For Humana data, the process is same as Medicaid data, except it contains data from out of states. We did data linkage for KY residents, IN residents, OH residents and the rest neighboring states residents then used the same process for each state linkage then combined them all together to get the final complete true matches. Based on these true matches, we can examine the performance of different approaches.


Results — Medicaid (Probabilistic)

» There are total 2644 true matches. One-to-many and Many-to-Many only add one
extra true case individually.

l1toM MtoM
N % of N % of
N (True True N (True True
Score (Matches) Matches) Matches |(Matches) Matches) Matches
20+ 2591 2591 100.0% 2591 2591 100.0%
18-19.9 19 19 100.0% 19 19 100.0%
15-17.9 23 23 100.0% 23 23 100.0%
13-14.9 18 6 33.3% 18 7 38.9%
11-12.9 123 4 3.3% 119 3 2.5%
10-10.9 180 0 0.0% 175 0 0.0%
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Results — Medicaid (Deterministic)

» Total 2650 matches identified by deterministic matching with 2631
true matches. Sensitivity = 0.995, specificity = 0.998, PPV = 0.980,

NPV=0.997
% of

N True
Match Method N (Matches)| (True Matches) | Matches
SSN, Last Name, First Name 2485 2485 100.0%
SSN, Last Name, Month of Birth,
Gender 71 71 100.0%
SSN, First Name, Month of Birth,
Gender 40 40 100.0%
Last Name, First Name, Month
of Birth, Year of Birth, Gender 54 35 64.8%
Total 2650 2631 99.3%
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There are 2650 matches identified by deterministic matching and 2631 true matches. Majority of these true matches are type 1 match which matched by SSN, last name and first name. … the type 4 matches, matched by name, date of birth and gender provided some matches but not all of them are true matches. When SSN is not involved, it is likely to identify false matches because there is a fair chance to have people with the same name, gender and year and month of birth.

On the bright side, eve there are some false matches, the error is very small. Only 19 out of 2650 cases. The sensitivity …, only if our breast cancer screening, or colorectal cancer screening can have suc


Results — KY Humana (Probabilistic)

» There are total 3825 true matches. 3784 from KY claims, 12 IN, 13 OH and 16
neighboring states. One-to-many from KY claims adds 5 extra true matches, and
Many-to-Many from KY claims adds 17 extra true case separately.

1toM MtoM
N % of N % of
N (True True N (True True
Score (Matches) Matches) Matches |(Matches) Matches) Matches
20+ 3416 3414 99.9% 3416 3416 100.00%
18-19.9 93 90 96.8% 93 93 100.00%
15-17.9 176 159 90.3% 176 165 93.8%
13-14.9 211 88 41.7% 204 85 41.7%
11-12.9 694 25 3.6% 686 27 4.0%
10-10.9 978 4 0.4% 979 4 0.4%
9-9.9 2193 2 0.0% 2215 4 0.0%
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Same as data linkage with Medicaid, most of true matches come from the cases with 20+ scores. However, we were able to identify true matches even when scores are lower than 10. It is likely because the Medicaid had better data quality on SSN, hence it is less likely to identify tur matches from the lower scores. Humana file is also much bigger than the Medicaid file. 


Results — Other States Humana
(Probabilistic)

IN OH Neighboring States
N % of N % of N % of
N True True N True True True True
Score Matches Matches Matches | Matches Matches Matches [N Matches Matches Matches
20+ 13 13 100.0% 12 12 100.0% 16 16 100.0%
18-19.9 3 1 33.3% 0 0 0.0% 0 0 0.0%
15-17.9 7 0 0.0% 10 1 10.0% 10 0 0.0%
13-14.9 43 0 0.0% 73 0 0.0% 73 0 0.0%
11-12.9 323 0 0.0% 473 0 0.0% 473 0 0.0%
10-10.9 642 0 0.0% 718 0 0.0% 718 0 0.0%
9-9.9 1598 0 0.0% 1648 0 0.0% 1648 0 0.0%




Results — Humana (Deterministic)

» Deterministic matching identified 3761 true matches out of total 3825. Excluding
typed matches from out of state claims, Sensitivity = 0.994, specificity = 0.990, PPV

= 0.981, NPV=0.990

Neighboring

Match Method Kentucky Indiana Ohio States
N N _True| N N _True | N [N_True N N_True

SSN, Last Name, First Name 3262 3262 | 13 13 11 11 16 16
SSN, Last Name, Month of Birth,
Gender 112 112 1 1 0 0 0 0
SSN, First Name, Month of Birth,
Gender 41 41 0 0 1 1 0 0
Last Name, First Name, Month of
Birth, Year of Birth, Gender 418 346 50 0 98 0 273 0
Total 3833 3761 | 64 14 110| 12 289 16
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Pay attention to the type 4 matches. For KY residents, there are a lot of true matches from type 4. For out of state, there are 0. This is because of rules we used. We required if not matched by SSN, a case has to be matches by name, birth date  and address. Since these are out of state cases, none of them can be considered as true matches as our rules. But it is possible a few of them may be true matches.


Summary

Y

Link Plus is relatively stable and fast.

Y

One to Many and Many to Many matching generated almost
identical results. Many to Many may provide slight more matches.

» Cut-off values for linkage score can be set at 10 or higher. It is very
rare a true cases can be identified with a value below 10. This
depends on the quality of data, particularly the quality of SSN.

» Deterministic matching provides comparable result compared to
the probabilistic data linkage.

» Choosing the best algorithm to use depends on many interacting
factors, such as time, resources, data access, quality of matching
variables.
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If Manual Review is Not Possible

» “True” match if linkage score > 18 or it is a deterministic
match

» Medicaid: sensitivity = 0.997, specificity = 0.998
PPV =0.993, NPV =0.999

» Humana: sensitivity = 0.999, specificity = 0.990
PPV =0.982, NPV =0.999

» This algorithm provides better linkage than the deterministic
matching.
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