
Interoperable Approach to Data Validation

Fabian Depry
Information Management Services

NAACCR Conference, June 2011

Today’s Presentation
 Introduction to the SEER Edits Engine

 What is it?

 Why do we need it?

 How was it implemented?

 How is it used?

 What are our plans for the future?

What is the SEER Edits Engine?
 Java framework to validate incidence data

 Used by Java applications that cannot use SEER and other edit sets
via GenEdits

 A library of Java source code that is used by Java programs
maintained by the SEER program (SEER*DMS, SEER*Abs,
SEER*Edits)

Executes edits against data in any format
 Text files, e.g., NAACCR Abstract files

 Values entered on data entry forms

 Values stored in proprietary database structures

Why build a new engine?
SEER*DMS has specific needs:

 Validate data stored in a relational database

 Allow registry-specific edits to be maintained through the
application

 Support a mechanism to easily test the edits logic

SEER*Abs and SEER*Edits:
 Validate data in data entry forms (SEER*Abs)

 Validate data in text files (SEER*Edits)

 Import edits written in other software (both)

System Requirements
 For validating cancer data:

 Reliability

 Speed

 For maintaining edits:

 Simple but powerful syntax

 Testing framework to verify the edits logic

 Graphical tools to assist writing and updating edits

 For maintaining the edits engine:

 Operability: running edits on different data types

Supporting Different Data Types

Edits Syntax - Groovy
 Groovy is a scripting language based on Java:

 Anything that can be done in Java can be done in Groovy

 Groovy also has unique syntax to allow for small, elegant scripts

 Groovy scripts can also use readily available Java libraries

 Edits are based on Boolean logic.
 If an edit returns “true”, it passes. Examples:

 return line.primarySite ==~ /C\d\d\d/

 return Hist_ICD_O_3_Table.contains(line.histologyIcdO3)

Edits storage - XML
 The engine provides an API to read and write eXtensible

Markup Language (XML) files:

<rule id="primary-site" name="Primary Site“ ruleset="field">

<expression>return line.primarySite ==~ /C\d\d\d/</expression>

<message>Primary site is not valid.</message>

</rule>

 The edits can actually be stored in any format

 SEER*DMS persists edit source code in a database table

 SEER*Abs and SEER*Edits – edits are stored in XML files

Engine Speed
 The key to super-speed: multi-threading

 The more resources available, the faster the edits will run

 In SEER*DMS:
 1,294 edits ran on data for 269,727 patients using a Linux server

 58 minutes  78 patients/second (may include multiple tumors)

 In SEER*Edits:
 582 SEER edits ran on 9,422,096 records using a 64-bit Windows

desktop with two dual-core processors

 3 hours 37 minutes  723 records/second

 In SEER*Abs:
 Edits are executed on one record at a time, not in batches

 Validates data entry form each time the user exits a field

Use case – SEER*DMS
SEER*DMS Editor:

Edits Tab of the Editor:

Use case – SEER*Abs
Data Entry Form:

Edit Documentation:

Use case – SEER*Edits (Session)

Use case – SEER*Edits (Results)

Use case – Edit Writer

Using the GenEdits Metafile

 Many SEER Registries also use NPCR or NCDB edit sets
 Goal: use these edit sets in SEER*DMS, SEER*Abs, SEER*Edits

 GenEdits
 Uses a simple and well-defined language

 In theory, it is possible to write a compiler to translate GenEdits source
code into Groovy code that could be made available to the Java
programs via the SEER Edits Engine

 Edits Compiler
 Work in progress

 Nearly all edits have been translated, but not all

 Updates made only in the GenEdits version; the compiler would be
used to create the updated edit sets for the Java programs

Translating a Simple Edit: Date of Birth

Loading Translated Edits in SEER*Edits

Next Steps: SEER*Utils
 Utility programs available in a single Java library

 SEER*Utils currently contains
 SEER Edits Engine

 Java bridge to the Collaborative Stage DLL

 SEER Site Recode mappings

 SEER*Rx drugs and regimens data

 Hematopoietic and Lymphoid Database

 Multiple Primaries Calculator

 NAACCR mappings with an API to facilitate reading and
writing of NAACCR data files

SEER*Utils
 SEER*Utils can be very easily integrated with a Groovy script:

import com.imsweb.seerutils.*

import com.imsweb.seerutils.cstage.*

SeerUtils.initializeAll()

println ‘CStage DLL version is ‘ + CollaborativeStage.getVersion()

SeerUtils.uninitializeAll()

